

Isaiah Carrington

Isaiah Carrington

Table of contents

Contents
Table of contents .. 2

Chapter 1: Introduction to the basics ... 5

Introduction to Programming ... 6

What is programming? ... 6

How is this useful? .. 6

What part do programming languages have? .. 6

More on programming. ... 6

What’s next? ... 7

Introduction to Problem Solving ... 8

What is Problem Solving? ... 8

How does it affect Programming? .. 8

How to Problem Solve? ... 8

Introduction to Algorithms ... 9

What is an Algorithm? .. 9

How are they useful? .. 9

Examples of Algorithms: ... 9

Ways of representing Algorithms. .. 9

Introduction to Narrative Writing ... 10

What is a narrative? .. 10

How to write a narrative? ... 10

The examples .. 10

Introduction to Pseudocode ... 11

What is Pseudocode? .. 11

Using Pseudocode ... 11

Putting it all together .. 13

Introduction to Flowcharts ... 14

What is a flowchart? ... 14

Why is a flowchart useful? .. 14

Using a flowchart .. 14

Isaiah Carrington

The Example .. 15

End of Chapter 1 ... 16

Chapter 2: Programming Fundamentals ... 17

Welcome .. Error! Bookmark not defined.

IPO (Input, Processing, Output) .. 18

Variables ... 19

Variable names ... 19

Creating a variable .. 20

Assigning a value to a variable .. 21

Using a variable ... 21

Constants .. 22

Basic Data Types ... 23

Integers ... 23

Floats / Real... 23

Characters ... 24

Strings ... 24

Booleans .. 24

Arithmetic Operators .. 26

Addition (+) ... 26

Subtraction (-) ... 26

Division .. 27

Multiplication .. 27

Modulus .. 27

Order of Operations (Arithmetic Operators) .. 29

Logical Operators .. 32

Equality Operators ... Error! Bookmark not defined.

Relational Operators ... 31

Logical Connectives .. Error! Bookmark not defined.

Unary Operators ... 34

Unary + and – .. 34

Unary ++ and --.. 34

Unary not (!) .. 35

Types of Programming Constructs .. 36

Isaiah Carrington

Sequential Programming .. 36

Selective Programming ... 36

Repetitive Programming ... 40

Isaiah Carrington

Chapter 1: Introduction to the basics

This will be the first of several notes to explain the basics of programming and get you

(the reader) started on your way to becoming a developer.

In this introduction to the basics, I will cover the following Concepts:

1. Introduction to Programming

2. Introduction to Problem Solving

3. Introduction to Algorithms

4. Narrative Writing

5. Introduction to Pseudocode

6. Introduction to Flowcharts

Isaiah Carrington

Introduction to Programming

Before we can begin learning how to program, we will have to learn what is

programming.

What is programming?
Simply put, programming is the process of designing and building a computer program designed to

accomplish a result or to perform a task.

How is this useful?
Programming has several applications in our modern day lives, solving several of our problems. For an

easy example, think of Communication. By using programming, we have been able to create several

applications which help to solve this problem, such as social media. Tasks that may have been long and

tedious before by human hands, is now being automated by programming, and improving efficiency and

accuracy by several times.

Note: I won’t give a history of programming because that is not what this series of notes is about. This is

simply a brief overview so you can understand what it is exactly that you are getting into too.

What part do programming languages play?
Programs in their most basic forms, is a sequence of instructions that a computer can follow. As you may

know, computers do not understand languages like English. What they do understand however, are

binary strings (i.e., a sequence of 0s and 1s). However, these binary strings are not easily understood by

us humans. If I were to present to you a binary string and asked what it meant, by default you would

have no clue. You may be able to figure it out by doing mathematical calculations, but especially for

larger binary strings, it is by no means a simple feat. This is where programming languages come in.

The role of programming languages is to act as a sort of middle ground, between our understanding of

languages (such as English), and the computer’s understanding of binary strings (0s and 1s).

Programming languages allow us to define instructions in a language (known as natural language. For

example, English) that we understand, and then be able to automatically convert the instructions into

machine code (0s and 1s) for the computer to understand and execute.

Deeper look at programming.
So now we know what a programming language is, let’s take a deeper look.

Isaiah Carrington

There are a wide variety of programming languages that are available for us to use, each with their own

strengths and weaknesses. With the great diversity among these programming languages, there exists a

common ground for making programs. In this series, we will be looking at 3 of these methods, namely:

• Narratives

• Flowcharts

• Pseudocode

What’s next?
Now that we have a basic understanding about what exactly programming is and why it is useful, now

we can start learning more about the basics and getting started with applying it in real life.

To begin, we will start looking at problem solving.

Isaiah Carrington

Introduction to Problem Solving
For this section, we will look at the most fundamental part of programming, that is, Problem Solving.

What is Problem Solving?
Simply put, Problem Solving is solving a problem. In practice, it is a bit more complex than that.

Problem Solving involves taking a problem, understanding the problem and what it needs, and then

making a solution that solves the problem completely.

How does it affect Programming?
Looking back, we should remember that programming exists so we can solve problems by use of

computers. Stated more explicitly, programming allows us to take our solutions that we would have

gained from Problem Solving the problem and implement it as a computer program.

In other words, without Problem Solving, programming loses one of its purposes.

How to Problem Solve?
Problem solving is not as difficult as some people make it out to be. Although the process may get

increasingly harder as the problems get more difficult, the same steps can be applied to arrive at a

solution. These steps are as follows.

1. Read the problem several times

2. Highlight the keywords in the problem

3. Break the problem down into simple steps

4. Find solutions for each step

5. Put it all together for your final solution

We’ll be using this method of problem solving going forward for all examples that we do throughout this

document.

Isaiah Carrington

Introduction to Algorithms

With the basic introduction to programming completed, we can begin looking at algorithms.

What is an Algorithm?
An algorithm can be defined as a sequence of clearly defined, explicit, unambiguous (clear) steps,

designed to solve a problem in a finite time period. Algorithms are generally written in natural language,

and as implied, provides a solution to a problem, which can then be implemented by use of a

programming language.

How are they useful?
Algorithms allow us to see and theoretically test a solution before implementing it with a programming

language. This can save time during the development process of the program. Also, as they are often

written in natural language (Example: English), it is not dependent on any specific language. This means

that turning the algorithm into a program is possible regardless of what language is being used.

Examples of Algorithms:
Examples of Algorithms include:

• Recipe to bake a cake

• Instructions to find the largest number of a given list

• Sorting numbers from smallest to largest

• Finding the shortest path through a maze

Ways of representing Algorithms.
As mentioned previously, we will be looking at 3 ways of representing algorithms: narratives,

pseudocode, and flowcharts.

Isaiah Carrington

Introduction to Narrative Writing
As done previously, we will first start by identifying what a narrative is.

What is a narrative?
A narrative is the simplest way of representing an algorithm in natural language, void of any

programming constructs. Due to its simplicity, narratives are also the best to show people who may not

be programming savvy, when explaining how an algorithm may work. It is simply a sequence of natural

language statements

How to write a narrative?
Writing a narrative is extremely simple. First, you take your problem, and understand what it is asking of

you. After you understand what the problem is asking, then you write down each step to solving it in

plain English. This will be understood better with the use of examples

The examples

Example 1:

Problem: “Write a narrative that will provide instructions on how to count only the even numbers

between 1 and 15 inclusive”

Solution:

First, we read the problem and pick out keywords. For this problem, the keywords will be:

• Even

• 1

• 15

These are the words that instruct to us how the program is supposed to work. Now we turn it into a

narrative by giving simple statements.

1. Start counting upwards from 1
2. Each time you increment, check to see if the number is an even number
3. If the number is an even number, then display it to the screen
4. Repeat steps 2 – 3 until the number is 15

Isaiah Carrington

Introduction to Pseudocode
So, we’ve looked at beginner information for Algorithms and Narratives. Understanding these basics will

allow us to move onto the next stage… Pseudocode

What is Pseudocode?
The word Pseudo means “fake”. So simply put, Pseudocode is fake code.

Pseudocode makes use of basic programming constructs and its’ own syntax, which allows solutions to

be drafted into a code like format. However, it is NOT a programming language, and therefore cannot be

executed by a computer. Its main purpose is to provide a look at how a solution may look in a code like

format, which makes translating to an actual programming language easier.

Note: Syntax can be thought of as the grammatical rules for a language. For Example, we have syntax for

English, like using “a” before a word beginning with a consonant, and “an” before a word beginning with

a vowel.

Using Pseudocode
As previously mentioned, pseudocode has its own syntax, that is, it has its own rules for how it should

be written. We will look at some of the most common ones that we will be using throughout this book.

Feel free to come back here at any time for a review.

Begin and End.

First off, are the BEGIN and END keywords. Like they sound, these keywords indicate the beginning and

end of the Pseudocode. All complete pseudocode MUST contain these 2 keywords. In future examples,

when I do not include these, that means that the example is a snippet, that is, only a section of the

complete program.

Example:

1. BEGIN
2. // Some Pseudocode statements here
3. END

Comments

Comments are text that we can use to describe what a piece of code, without having to worry about our

program trying to run it. They are strictly for the readers of the code to get an understanding as to how

a section of code works, or for some other explanation.

To use a comment in Pseudocode, we will make use of the // sign, as shown in the above Begin and End

example.

Declare variable_name as type data_type

This is syntax used to declare variables (Remember this word. It will be explained in Chapter 2) with a

given name as a specific data type. Don’t mind if this sounds confusing now, it will make sense soon.

Isaiah Carrington

Example:

1. BEGIN
2. DECLARE number as type integer
3. END

DISPLAY “…”

This statement says that everything after the keyword should be displayed to the screen.

Example:

1. BEGIN
2. DISPLAY "Hello there"
3. END

READ variable_name

This statement says to get input from the user’s keyboard, and when the user presses enter, to then

save the input in the given variable name

Example:

1. BEGIN
2. DISPLAY "Enter a number"
3. READ number
4. DISPLAY "Your number was ", number
5. END

Variable Assignment

In order to assign values to variables, we make use of the assignment operator, the = sign. Example:

1. BEGIN
2. // This stores the number 10, in a variable called x
3. x = 10
4. END

FOR variable_name = start_value TO end value DO… ENDFOR

This is the format for a FOR loop. Again, everything will make sense as we go in further detail. For now,

an example

1. BEGIN
2. DECLARE number as type integer
3. FOR number = 1 to 10 DO
4. // Do something in here
5. ENDFOR
6. END

IF (condition) THEN… ENDIF

This is the syntax used for an If statement. As with the others, this will be explained later on in more

detail. Example:

Isaiah Carrington

1. BEGIN
2. DECALRE number as type integer
3. number = 5
4. IF number == 5 THEN
5. DISPLAY "The number is 5"
6. ENDIF
7. END
8.

Putting it all together
Here, I will put together everything I would have covered in this section, to create a Pseudocode

representation of the problem we look at in the narrative section. That is, displaying all even numbers

between 1 and 15.

Figure 1: Example 1 of Narrative writing

Solution:

1. BEGIN
2. DECLARE number as type integer
3. FOR number = 1 TO 15 DO
4. IF number % 2 == 0 THEN
5. DISPLAY number
6. ENDIF
7. ENDFOR
8. END

For now, I just want you to get a basic understanding of some of the concepts that we will be looking

deeper into as we go forward. Don’t feel overwhelmed as it will all make sense soon.

Isaiah Carrington

Introduction to Flowcharts

What is a flowchart?
A flowchart can be defined as a visual representation of an algorithm. Flowcharts make use of various

shapes and symbols to visual represent structures that exist within an algorithm.

Why is a flowchart useful?
There are times when a visual representation might be more appropriate and easier to display and

understand than a worded one.

Using a flowchart
As mentioned, flowcharts use various symbols to convey different meanings. Here in this introduction,

we will look at the most common ones and their meanings.

The flowline

This is a flow line (an arrow). These show how the program is supposed to flow from one shape to

another.

The Oval

This shape is used for START and STOP. These show where the flowchart begins and ends.

The Parallelogram

This shape is used for INPUT and OUTPUT. That is, whenever you want the user to enter a value, or you

want to display a value to the user.

The Rectangle

This shape is used for processes. These processes include mathematical calculations and variable

assignment (giving a value to variables).

The Rhombus

The Rhombus is the shape used to evaluate a given condition, and then do 1 of 2 results depending on

the condition’s result. This will be easier to demonstrate by use of an example.

START STOP

Isaiah Carrington

The Example

For this example, we will make use of the same previous problem… that is, displaying only the even

numbers within the range of 1 and 15 inclusive. We will now put together all that we have learnt thus

far.

Isaiah Carrington

End of Chapter 1
This brings us to the end of our introductory chapter.

In this chapter, we would have looked at introductions to some of the fundamentals that you will need

to move forward and grow in computing programming, namely:

• Problem Solving

• Algorithms

• Narrative Writing

• Pseudocode

• Flowcharts

All of which will be discussed in detail in their respective chapters.

As it will be more practical to have an understanding about syntax for Pseudocode, in the next chapter,

we will focus on that, before moving onto practicing Problem Solving and Algorithms.

Isaiah Carrington

Chapter 2: Programming Fundamentals

Overview
Welcome to chapter 2. The focus of this chapter will be on Programming Fundamentals. For the

examples and explanations, we will be making use of Pseudocode to get you familiar with it and its

application, occasionally using C++ or Python for a visual representation. By the time you complete this

chapter, you will have a good grasp on the following concepts:

• IPO

o Input

o Processing

o Output

• Variables

o What they are

o Naming

o Creating Variables

o Using variables

o Constants

• Basic Data Types

o Integers

o Floats / Real

o Characters

o Strings

o Booleans

• Arithmetic Operators

o Addition

o Subtraction

o Division

o Multiplication

o Modulus

• Logical Operators

o Equality

o Inequality

o Logical Connectives

• Types of Programming Constructs

o Sequential

o Selective

o Repetition

o Functional

Isaiah Carrington

IPO (Input, Processing, Output)
As we would have discussed, programs exist for us to solve problems. What we haven’t looked at

however, is how exactly they do this. Well prepare yourself because that will be the focus of this section.

For a program to function, it generally has 3 things it needs. These are:

• Inputs

• Processing

• Outputs

The inputs give the program the information it needs to carry out its task.

Processing is the actual weight of the program, which processes the information it would have received

as inputs, and then calculate some form of result.

Outputs are what the program will display as a result of processing. Outputs have various forms

including but not limited to:

• Text on screen

• Audio

• Some action

We will look at a basic example making use of Pseudocode.

Example:

Write a program that gets a number from a user, adds 5 to it, and then displays the number.

To solve this problem, we first break it down into Inputs, Processes and Outputs. To easily do this, we

will make use of an IPO chart.

INPUTS PROCESSES OUTPUTS

A number Add 5 to the number The new number

Using an IPO chart allows us to easily visualize our 3 categories of information and makes building our

program easier. Now we can work on the solution.

1. BEGIN
2. // Remember, this is a comment
3. // First we get the input from the user, by making use of the READ keyword
4. READ number
5. // Now we add 5 to that number
6. number = number + 5
7. // Now we display the new number making use of the DISPLAY keyword.
8. DISPLAY number
9. END

To get input from a user’s keyboard in pseudocode as shown above, we can make use of the READ

keyword. The format is as follows:

Isaiah Carrington

READ variable_name

WHERE variable_name is the name of the variable to store the received data.

To display output to the screen, we make use of the DISPLAY keyword. The format for this is:

DISPLAY “some text here” OR DISPLAY variable_name

WHERE “some text here” is text wrapped in matching single or double quotes (" " ' '), and variable_name

is the name of a variable. When either of these statements are executed, the value after the DISPLAY

keyword, will be sent to the screen for you to view.

Thus far, we have encountered the term variable countless times, but still have received no

explanation. Now that we have completed our look at basic I/O (Input / Output), we can move on to

focus on processing.

Before looking at data types however, first we bring our attention to variables.

Variables
When explaining what variables are, I like to relate them to boxes. A variable is like a box that you can

only put one item in at a time. If you want to put in a different item, then you end up taking out the

previous item, and then putting in the new one.

Our powerful boxes, variables, are part of our device’s memory, that is reserved for storing a particular

bit of data. There are different data types (that we will look at shortly), and therefore, each will be

stored differently. For example, you wouldn’t expect a simple text file to take up nearly as much storage

as a mp4 file (video) will. This is because they are different file types, and represent different types of

data, and have different requirements for storing.

For every one of these boxes you create, you must give it a name that you will use to find the box and

get what is inside of it. As such, variable names are like labels that you will put on your box to know

which is which, and what should have in what. In programming, these variable names have rules that

they have to follow to be considered valid.

Variable names
Variable names must generally follow the following rules to be considered as valid:

1. Variable names must not contain spaces. Use underscores (_) instead.

2. Variable names must not begin with a number but may include a number anywhere else in its

name.

3. Variable names must not contain any symbol (!@#$%^&*()-+={}) etc. The only exception being

the underscore.

4. Variable names may begin with an underscore.

Isaiah Carrington

5. Variable names are generally case sensitive. That is, myVariable, myvariable and MyVariable,

refer to three (3) different variables.

6. Variable names SHOULD be clear and describe the value the variable is meant to have. This is

recommended for readability purposes.

When naming variables, you must also consider not just yourself, but also any future developer that may

have to work with your code, including your future self. Remember, what may make sense to you in the

moment, may be completely nonsensical to you in the future, or to anyone else. I say this from

experience, as having sillily named a bunch of variables stuff like, yes, no, maybe and thing. Needless to

say, when I had to go back to make fixes, I ended up having to rewrite that entire section of code

because I could not figure out what anything did .

Creating a variable
Now that we know the rules for naming our powerful boxes, let’s find out how to make them.

The way to make a variable depends on how the programming language is typed. There are two (2) main

types, these being Static and Dynamic.

Static typed languages require that variables be declared before they are used. Declaration simply

means that we tell our program that we want to create a variable x, which has the type of y.

In a static typed language, when we create a variable, we are telling our program to reserve space in the

computer’s memory of a specific size to store a certain type of value, and then label that reserved space

with our variable_name, so we can get access to it.

In pseudocode, we make use of this static approach for declaring our variables. To declare a variable in

pseudocode we use the following statement:

DECLARE variable_name AS TYPE data_type

Where variable_name is the name of the variable and data_type is the type of data the variable will

contain.

In a dynamically typed language, there is no need to reserve the space for a variable beforehand. We

can simply create and use them as we please. Whereas in a Static typed language, once a variable is

declared with a specific data type, it can only hold data of that same data_type, in a Dynamically typed

language, the type of a variable is dependent only on the type of the data it is holding and will change

depending on the data.

This information may not seem relevant now, but it will become important when you graduate from

pseudocode and choose a programming language to use.

Now as a recap, we are going to create variables called number and letter, which will have the datatypes

integer and character, respectively.

1. BEGIN
2.
3. // Integer is a numeric data type that represents all whole numbers
4. // Whole numbers are numbers without a decimal point, both positive and negative
5. Declare number as type Integer
6.

Isaiah Carrington

7. // Character is a data type that represents any single character.
8. // Example: ‘a’, ‘b’, ‘!’, ‘@’, ‘&’
9. Declare letter as type Character
10.
11. END

We will look at datatypes more in an upcoming section.

Now that we know how to create a variable, now we can look into giving them values.

Assigning a value to a variable
To assign a value to a variable, we make use of the assignment operator (=) using the format:

variable_name = value

Where the name of the variable that we want to store data in is on the left side of the equal sign, and

the value that we wish to store inside the variable, is on the right side.

This action of giving a variable a value is referred to as assigning.

When assigning a value to a variable in pseudocode, we may either use the above approach or:

variable_name <- value

Which is read as: “variable_name is assigned value” or “value is assigned to variable_name”

Either approach is fine in pseudocode, but to keep it similar to what you will encounter when you pick

up a programming language, I will continue to make use of the assignment operator (=).

For a “techier” view, when you use that assignment statement, you are telling your program to take the

value, and store it in the memory location under the name variable_name, so that when you call on

variable_name, it knows to give you that value.

Using the box analogy, consider it as you tell your box manager, to take your book put it in a box in your

basement called myBook. Now when you ask your box manager to bring you the item in the box labelled

myBook, then he will know to return your book to you.

Using a variable
To use a variable, we simply refer to it by the name we gave it. With this name, we can modify the

contents of the variable, or simply retrieve them for whatever purpose we need, such as displaying it to

the screen. Example:

1. BEGIN
2. // Here we declare a variable called number, to be the type of integer
3. Declare number as type Integer
4. // Here we assign the value 5, to the variable named number
5. number = 5
6. // This will display the contents of number (in this case 5) to the screen
7. DISPLAY number
8. END

Isaiah Carrington

As we continue to progress through the book, we will continue to get more familiar with the concepts of

variables and their uses. Before we move onto data types, I want to introduce the concepts of Constants

briefly.

Note: A variable may only hold data corresponding to the type that the variable was declared with. That

is, a variable declared with the data type of integer, may only hold integers, and one declared with the

data type of real, may only hold real numbers.

Constants
We know that variables are like containers / boxes that we can create, then modify the contents as we

wish. Constants are similar to variables, in the sense that we can create them to store data, that we can

then retrieve at any time by calling its name. The difference lies in modification. Whereas variables can

change their value at any time by use of the assignment operator (=), the value of a constant remains

the same as when it was declared and cannot be modified after. Therefore, it is constant. An example of

a constant would be PI. The mathematical constant PI has a set value, which cannot be changed, but can

be used continuously in our calculations.

To declare a constant in pseudocode, we use this statement:

DECLARE CONSTANT variable_name AS TYPE data_type WITH VALUE value

Where variable_name is the name of the constant, data_type is the type of data the constant is

expected to hold, and value is the data that the constant would be expected to hold.

An alternative to the above is replacing CONSTANT with the shortened form CONST.

Practice: Create an integer constant named myConstant with the value of 10

1. BEGIN
2. Declare const myConstant as type Integer with value 10
3. END

With constants covered, we can finally look at these datatype things we’ve been mentioning so much

recently.

Isaiah Carrington

Basic Data Types
In real life, there are different types of data. Integers, real numbers, and text just to name a few.

Depending on the type of data, the things we can do to it differ. For example, you wouldn’t be able to

divide the word “dog” by the word “cat”, nor could we add the number 5, and the word “house”.

To represent these various types of data in programs, most programming languages implement what

are known as data types. In this section, we will look at some of the most basic ones that you will most

likely be using whenever you decide to code up a new project.

These are:

• Integers

• Real numbers

• Characters

• Strings

• Booleans

Integers
As you may recognize from math, Integers are whole numbers (numbers with no fractional part), that

may be either positive or negative. Examples of integers include: 54, -123, 20134, -123124, 0, 1, -1 and

21.

To declare a variable to have the datatype of integer, we use the following statement:

DECLARE variable_name AS TYPE integer

Where variable_name is the name of the variable to be declared as an integer.

Example: Create a variable named myFirstInteger and give it the datatype of integer.

1. BEGIN
2. Declare myFirstInteger as type Integer
3. END

Floats / Real
Floats or real numbers are any number that can be represented as a fraction or contains a fractional

part. In programming, for a number to be considered as a real number, then it MUST contain a decimal

point. That is to say, 10 and 10.0 are not of the same time. 10 will be recognized as an integer, whereas

10.0 will be recognized as a real number, despite essentially containing the same value. However, when

comparing the 2 using code, that is, checking to see if 10 is equal to 10.0, the result will be True.

Note: Some programming languages may refer to real numbers as floats (floating point numbers)

 To declare a variable as a real number in Pseudocode, we use the following format:

DECLARE variable_name AS TYPE real

Where variable_name is the name of the variable whose data type is being set to real.

Isaiah Carrington

Example: Create a variable named myRealNumber of the data type Real and give it the value of 7.5.

1. BEGIN
2. Declare myRealNumber as type Real
3. myRealNumber = 7.5
4. END

Characters
The character data type is used to represent a single character. These are generally represented by the

character wrapped in single quotes. Examples: ‘1’, ‘5’, ‘a’, ‘A’, ‘@’, ‘*’, ‘^’.

When declaring a variable to have the data type of character, we use the following format of:

DECLARE variable_name AS TYPE char

Where as usual, variable_name is the name of our variable that we want to be of the character data

type.

Example: Create a character typed variable with the name myFirstChar and store the character ‘+’ inside

of it.

1. BEGIN
2. Declare myFirstChar as type Char
3. myFirstChar <- ‘+’
4. END

Strings
Strings are a common data type. They are essentially a collection of characters, wrapped in double

quotes. Examples: “cat”, “monkey”, “car”, “some other really nice sentence”.

Example: Declare a variable named myNewString to hold the string “Pseudocode is a fundamental”.

1. BEGIN
2. Declare myNewString as type String
3. myNewString = “Pseudocode is a fundamental”
4. END
5.

Booleans
The last of the basic data types we will look at are Booleans.

Booleans are an extremely simple data type, capable of only storing 2 values, these being True and

False.

Making use of Booleans, we can make use of logic to evaluate conditions. To create a Boolean in

pseudocode, we use the following statement.

DECLARE myBoolean as type Bool

Although you may not directly use this data type, your program will still use it implicitly, such as when

using If statements and evaluating conditions.

Isaiah Carrington

Booleans are generally implicitly used as 1 and 0, which represent True or False respectively. As such,

despite us using the terms True and False, what I am about to show you in this next image is possible:

Figure 2: image showing addition of Booleans

You may initially be confused as to how we are adding values like True and False. Well, remember that I

said that Booleans are implicitly used as 1 and 0. The best way to think of it, is that True and False are

actually constants, holding 1 and 0 respectively. As such, True + True, is saying 1 + 1. False + False is

saying 0 + 0. Lastly, True + False, is saying 1 + 0.

I say this to bring up an important point. Any value that evaluates to 0, will be False, including the

number 0. Any other non-zero value, negative numbers included, will evaluate to True, as shown in the

below image.

Figure 3: Image showing bool values

Note: The bool(value) I have in the above image, just means to take whatever value is, and evaluate it to

be either True or False depending on the value. 1 – 1 is 0, therefore it is False.

Isaiah Carrington

Arithmetic Operators
In programming, we make use of arithmetic operators to execute certain actions on data. The ones that

we are going to look at in this chapter, are those that you should be well acquainted with basic math

classes. In programming, depending on the type of data being operated on (the operands), the

operators may behave differently.

Addition (+)
Between two numeric values (integers or floats/real numbers), the addition operator is used to add the

values together, and then return a result. Examples:

1. BEGIN
2. // 15 Will be displayed to the screen
3. Display 5 + 10
4. // 15.5 will be displayed to the screen
5. Display 5 + 10.5
6. // 20 will be displayed to the screen
7. Display 9.5 + 10.5
8. END

Note: When adding 2 numeric data types, if they are not the same, then conversion takes place

implicitly towards the one with higher priority. In the case of addition between an integer and a real

number, the result will be a real number. If you try to store the result of this addition in a variable of the

integer data type, then the fraction part of the number will be returned, that is, only the whole number

part will remain. Example:

1. BEGIN
2. Declare myInt as type Integer
3. // As we know, 10 + 10.5 gives us an answer of 20.5
4. myInt = 10 + 10.5
5. // Our output, however, will be 20.
6. // As integers do not know how to handle fractional parts
7. Display myInt
8. END

However, when used between 2 strings, concatenation takes place. That is, the string on the right side of

the + sign, will be added to the end of the string on the left side of the + sign. Example:

1. BEGIN
2. Declare myString as type String
3. myString = "Cat" + "Dog"
4. // CatDog will be displayed to the screen
5. Display myString
6. END

Subtraction (-)
Subtraction may only be done between 2 numeric values. Similar to addition, in the case of subtraction

between an integer and a real number, the result will by default be a real number. As such, if stored in a

variable with the data type of integer, the fractional part of the number will be lost, and only the whole

number will remain.

Isaiah Carrington

Division
Division may also only occur between two numeric values. It will be wise to note that division will

ALWAYS return a float, regardless of the types of the operands, as the result of the division. Example

1. BEGIN
2. // Division between 2 integers
3. DISPLAY 10 / 5 // Displays 2.0, a float
4. // Division between 2 floats
5. DISPLAY 6.6 / 3.3 // Displays 2.0
6. // Division between a float and an int
7. DISPLAY 6.0 / 3 // Displays 2.0
8. END
9.

Multiplication
When used between two numeric values, the product of the multiplication will depend on the operands

used. If a float / real number was involved during the multiplication, then the result will be a real

number. However, if it is a multiplication only involving 2 integers, then the result will be an integer.

Example:

In Python, my main programming language, multiplication has another function, and that is with a string

and an integer as operands. Multiplication between a string (x) and an integer (y), will cause the string x

to be duplicated y times. Example:

Figure 4: Python code to show string replication

You can use that same website here to try out the code yourself if you want. I do apologize for the red

underlines under variable names, that’s just my browser telling me those aren’t proper words .

Modulus
Modulus is a type of division, that only returns the remainder of the division. For example, 10 / 2, would

be 5 remainder 0. Therefore, 10 % 2, will give us 0. Another example would be 11 / 3. This will give us 3

remainder 2. Therefore, 11 % 3 will give us 2.

In an earlier example, when we were asked to find a number that was even, you may recall that we had

the following code:

If (num % 2 == 0) then

We will look at if statements shortly, but right now, the focus is on what is inside of the brackets. The

reason why we used modulus here, is because rightfully, for a number to be even, it has to be

completely divisible by 2. That is, when divided by 2, there must be no remainder. What we essentially

https://replit.com/languages/python3

Isaiah Carrington

do there, is check if the value of num has a remainder when divided by 2. If the remainder is 0, then num

has in an even number. Otherwise, it is an odd number.

The section of code I am talking about can be found here.

In Place Assignment
Earlier we looked at assigning a value to a variable. Now that we have looked at the basic arithmetic

operators, now is a good time to bring up In Place assignment operators. These operators combine the

effects of an arithmetic operator (+-*/%) with that of the assignment operator to get both effects. Take

a look at the example snippet below:

This is done by making use of the assignment operator, to assign the value of num + 5 to the variable of

num. However, this can be done simpler by way of an in-place operator. I.e.

These 2 snippets of code are identical in functionality. The main difference is that it removes the

redundancy from having to repeat the name of the variable when you are making an arithmetic change

to it. These in place operators exist for every arithmetic operator. For example.

Isaiah Carrington

This above snippet functions identically to the below, expanded snippet.

Order of Operations (Arithmetic Operators)
When multiple operators are in the same line to evaluate some condition, there is an order as to which

operation takes place first.

For example, given the equation: 10 + 3 * 5, what do you think the answer will be.

If you said 25, then you would be correct. But, why?

This is because multiplication has a higher priority than addition, and therefore will be completed first.

However, take a look at this next situation.

Given the equation: (10 + 3) * 5, what do you think the answer will be?

If you thought 65, then +10 points for you. But, why?

This is because brackets have the highest priority and will be evaluated before anything else.

Here’s a table of the order of precedence for your reviewal in order of decreasing priority. As we meet

more operators, this list of ours will expand.

Operator Description

() Brackets

/ * % Division, Multiplication, Modulus

+ - Addition, Subtraction

In cases where operators on the same level are in the same statement, then the operations will be

evaluated from left to right. Example:

Given the equation: 10 * 2 / 5, what do you think the answer will be?

The correct answer will be 4.0. Since * and / are on the same priority level, the multiplication, which is

on the leftmost side, will be evaluated first, then the division.

Isaiah Carrington

That brings us to the end of the basic Arithmetic Operators. Now, we turn our attention to Logic

Operators.

Isaiah Carrington

Relational Operators
From mathematics, you should know of the 6 basic relational operators, them being: ==, !=, <, <=, > and

>=. In programming, they have the same function as they have in mathematics and will evaluate to True

or False depending on their operands.

The first one we will be looking at is the == operator and can be read as “is equal to”.

Example:

1. BEGIN
2. DISPLAY 5 == 5 // Will display True
3. DISPLAY 10 == 10.0 // Will display True
4. DISPLAY 10 == (5 * 2) // Will display True
5. DISPLAY 2 == 3 // Will display False
6. END
7.

This operator gives a result of True if the statement is True and gives a result of False otherwise.

Now, for the != or <> operator, both of which are read as “is not equal to”. This operator returns True if

the operands are unequal, and False if they are equal.

Note: Depending on your teacher, you may use <> instead of !=, so just note that fact. However, both of

them serve the same purpose

Example:

1. BEGIN
2. DISPLAY 5 != 5 // Displays False
3. DISPAY 10 <> 2 // Displays True
4. END

Example:

1. BEGIN
2. DISPLAY 5 < 2 // This will display False, as 5 is not less than 2
3. DISPLAY 5 > 2 // This will be True, as 5 is more than 2
4. DISPLAY 5 >= 5 // This will be True because although 5 is not more than 5, it is equal
5. DISPLAY 5 < 5 // This is False as 5 is not less than 5.
6. END
7.

Isaiah Carrington

Logical Operators
We know that arithmetic operators are used to evaluate some mathematical operation, such as addition

or multiplication and that relational operators are used to compare values looking for equalities or

inequalities. Logical operators on the other hand, are used to create and evaluate a complex condition.

There are three of these Logical operators and they are:

1) AND

2) OR

3) NOT

Of these three logical operators, two are binary, as in they require two operands (a left and right value)

for them to work. It is these two (AND and OR) that we will be focusing on for this section. The NOT

operator will be looked at in the next section as it is unary.

AND and OR are known as logical connectives, as they are used to connect logical expressions and

returns a single truth value based on their operands.

Starting with AND consider the following statement:

If I am tired AND it is nighttime, then I will go to sleep.

Evaluating this is simple. All this means is that for me to go to sleep, I have to be tired, AND it has to be

nighttime. If I am tired but it is not nighttime, or it is nighttime, but I am not tired, or I am neither tired,

nor it is nighttime, then I will not go to sleep.

Thus, looking at AND, we can conclude that for a statement to be evaluated as True, both operands have

to evaluate to True. Here are some examples in code.

1. BEGIN
2. Display True AND True // Will display True
3. Display True AND False // Will display False
4. Display False AND False // Will also display False
5. END
6.

This can be represented in the following truth table.

Operand 1 AND Operand 2 Result

TRUE AND TRUE TRUE

TRUE AND FALSE FALSE

FALSE AND TRUE FALSE

FALSE AND FALSE FALSE

Next is OR. Consider the following example:

If I am tired OR it is nighttime then I will go to sleep

What this means is that if either of these conditions are True, that is, if I am tired, or if it is nighttime,

then I will go to sleep. The only time I will not go to sleep, is if I am neither tired, nor it is nighttime.

Isaiah Carrington

This is represented in the following code

1. BEGIN
2. Display True OR True // Will display True
3. Display True OR False // Will also display True
4. Display False OR False // Will display False
5. END

Now we represent this in the below truth table.

Operand 1 OR Operand 2 Result

TRUE OR TRUE TRUE

TRUE OR FALSE TRUE

FALSE OR TRUE TRUE

FALSE OR FALSE FALSE

Note: Most programming languages tend to represent logical AND and OR as && and || respectively.

However, for easier readability with pseudocode, we will continue to use AND and OR.

Isaiah Carrington

Unary Operators
Thus far, all the operators that we have looked at have been binary. Not binary as in 0s and 1s, but

binary as in 2, that is, they required 2 operands (values, one on both sides of the operator) to function.

Now, we are going to review Unary operators. As the name implies, these operators only require one

operand to function.

Unary + and –
First on the list are the unary version of + and -, called unary plus and unary minus respectively. These

are called instead of addition and subtraction, when they are provided only one operand, that is to the

right of the operator.

Examples: +5, -2, +10, -9

Seeing the examples above, I am certain that you were able to understand their purpose. If you thought

that they were used to declare a number as positive or negative, then you were correct .

Unary ++ and --
Some programming languages make use of these 2 unary operators, which are known as the increment

and decrement operators.

These are used to affect the value of a variable containing a number, by 1. Increasing the value by 1 for

the increment operator and decreasing the value by 1 for the decrement operator.

There are 2 variations of these operators, known as pre and post.

Pre-increment and pre-decrement, involve having the operator placed right before the variable.

Example:

1. BEGIN
2. Declare num as type Integer
3. num = 5
4. Display ++num // Will display 6
5. // num now has the value of 6
6. Display --num // Will now display 5
7. // num now has the value of 5
8. END

Post-increment and post-decrement, however, involve the operator being placed directly after the

numeric variable.

Example:

1. BEGIN
2. Declare num as type Integer
3. num = 4
4. Display num++ // Will display 4. Will explain after
5. // At this point, num now has the value of 5
6. Display num-- // Will display 5. Will explain after
7. // At this point, num now has the value of 4
8. END

Isaiah Carrington

At this point, you may have started to realize that we are getting different results when we display the

value to the screen depending on whether we use the pre or post forms of the ++ and -- operators.

The difference between the 2 forms, is in the order of which they are done.

For the pre versions, notice how the ++ and -- come before the actual variable name? This means the

operation (the addition or subtraction) is actually done before the value of the variable is displayed.

However, for the post versions, notice how the ++ and -- come after the actual variable name? This

means that first the value of the variable is provided to be displayed, and THEN the operation (addition

or subtraction) is done.

Unary not (!)
Last but not least, is the unary !, read as “not”. This is a logical operator used to negate the current truth

value of an expression that it precedes. That is to say, any expression that was True, will become False,

and any expression that was False, will now become true.

Example:

1. BEGIN
2. DISPLAY !(5 == 5) // 5 == 5 is True, so this will display False
3. DISPLAY !(5 != 5) // 5 != 5 is False, so this will display True.
4. DISPLAY !(5 > 10) // 5 > 10 is False, so this will display True
5. END
6.

With all of the basic operators covered, we can now update our precedence table. The below operators

are listed in decreasing priority (from highest priority to lowest).

Operator Description

() Parentheses (brackets)

++
--

Post increment
Post decrement

+
-
!
++
--

Unary plus
Unary minus
Unary logical NOT
Unary pre-increment
Unary pre-decrement

/ * % Multiplicative

+ - Additive

< <=
> >=

Relational

==
!=

Equality

and (&&) Logical AND

or (||) Logical OR

Isaiah Carrington

Types of Programming Constructs
In our world, we have several different types of problems, and as such, we also have several solutions

for the same problem. Also, a solution may be able to solve a problem, but it may do so in an inefficient

manner which may not be ideal depending on the situation.

In this section, we will be looking at 3 types of programming constructs. Constructs, in terms of

programming, refers to formats that can control the order that our programming statements are

executed. We will begin with the most basic one, Sequential

Sequential Programming
This is the most basic form of programming, and simply means that the code is executed line by line,

sequentially. That is, one after the other in the order that they were defined. For example:

1. DISPLAY "Hello"
2. DISPLAY "There"
3. x = 10
4. DISPLAY x
5.

If we were to somehow run this, we will get the following output

1. Hello
2. There
3. 10

As you can see, each line would be executed one after the other, i.e., sequentially. That is all there is to

this, so we can move onto the next section.

Selective Programming
The next form of programming we will be looking at is Conditional / Selective. This makes use of IF

statements, which determine whether a section of code is to be executed or not, based on a condition,

hence the term Conditional.

IF statements

The basic format for an IF statement is:

IF condition THEN action

Where the condition is a statement, that is either True or False, and action is the code to be run if the

condition is True.

Thinking of it in simple terms, imagine when we tell ourselves that:

IF it is raining THEN I will walk with an umbrella.

This follows the same IF condition THEN action syntax and is easily understood. Another example:

Isaiah Carrington

IF he is hungry THEN he will eat food.

With some basic English examples, now we can try doing it in code.

Example:

1. IF (1 == 1) THEN
2. DISPLAY "One is equal to One"
3. ENDIF
4. DISPLAY "Above us is an if statement"

If we were to run this, THEN our output would be:

1. One is equal to One
2. Above us is an if statement

But, what happens when the condition is false. For example:

1. IF (2 == 1) THEN
2. DISPLAY "2 is equal to 1"
3. ENDIF
4. DISPLAY "Above us is an if statement"
5.

If we were to run this pseudocode, our output would be:

1. Above us is an if statement

This shows us another thing about how the IF statement works.

The IF statement will execute its code ONLY IF the condition is True. However, regardless of whether the

condition is True or not, program execution will continue on the next line that is not a part of the IF

statement. This explains why the line “Above us is an if statement” was displayed both times.

So, we can use the IF statement to check a condition, and then decide to do an action depending on if

the condition is True. But, what about when the condition is False? Will we have to make a new IF

statement to check for it?

Luckily, we don’t have to. Introducing the ELSE statement.

The ELSE and ELSE IF statements

The ELSE statement is an extension of our IF statement, which will ONLY be executed, if the condition

given to the IF statement is False.

The ELSE statement has the format: ELSE action.

Putting this together with the IF statement, we get:

Isaiah Carrington

IF condition THEN action ELSE action

Let’s try an example in plain English.

IF outside is raining THEN we will stay home. ELSE, we will go to the beach

Another example:

IF he is hungry THEN he will eat food. ELSE, he will go to sleep

Now let’s try doing this in code using our same 2 previous examples.

1. IF (1 == 1) THEN
2. DISPLAY "The numbers are the same"
3. ELSE
4. DISPLAY "The numbers are different"
5. ENDIF
6.

Executing this will give us the following output:

The numbers are the same

Now let’s try it with the second example.

1. IF (2 == 1) THEN
2. DISPLAY "2 is equal to 1?"
3. ELSE
4. DISPLAY "2 is not equal to 1"
5. ENDIF
6.

With this, our output will be:

2 is not equal to 1

With an IF THEN ELSE statement, it’s either only the IF action or the ELSE action that can be executed.

Not both.

This is not all the Selective Construct has for us. What if, we wanted to check for several conditions, and

execute different sections of code depending on the results? Introducing the ELSE IF statement.

This essentially takes the ELSE statement and allows it to be used with an IF statement, allowing you to

check for a different condition without having to make a whole new IF statement.

Example in English:

IF it is raining THEN we will stay inside. ELSE, IF it is hot THEN we will go to the beach. ELSE we can go

to the park.

Isaiah Carrington

 Now we can try an example using pseudocode.

1. IF (1 > 2) THEN
2. DISPLAY "1 is greater than 2."
3. ELSE IF (1 < 2) THEN
4. DISPLAY "1 is less than 2"
5. ELSE
6. DISPLAY "1 is equal to 2"
7. ENDIF

Running this, our output will be from the first statement whose condition is True. Therefore:

1 is less than 2

Review

Some things to note:

• You may have as many ELSE IF statements as you want.

• If using ELSE IF statements, your ELSE statement should always be AFTER all other statements.

• The ELSE statement can be thought of as the “Catch all” and will respond to any and every case

that is not handled by the previous IF or ELSE IF statements.

This concludes this section on selective programming, allowing us to move onto the next type of

programming constructs, that being, Repetitive programming.

Isaiah Carrington

Repetitive Programming
This construct focuses on using loops to repeat sections of code until a stop condition is reached. We

will be looking at 3 forms of these loops, namely the FOR loop, the WHILE loop and an honorary

mention, the DO…WHILE loop.

The For Loop

The FOR loop is a powerful tool, which allows us to repeat a section of code for a SPECIFIED number of

times.

We use the for loop when we want to repeat a section of code for a known number of times (emphasis).

Curious as to why we would ever want to repeat code? Well, here are some examples done in

Pseudocode.

Example 1:

Say that we wanted to display numbers 1 through 10 inclusive in our program. This is how we would

normally attempt to do it.

Isaiah Carrington

1. BEGIN
2. Display 1
3. Display 2
4. Display 3
5. Display 4
6. Display 5
7. Display 6
8. Display 7
9. Display 8
10. Display 9
11. Display 10
12. END

Yes, this method works, but what if we had to write a program to display the ID of each student in the

school, and there were over 1000 students. Would we really have to write over 1000 lines to display

them all? Well, thankfully, it doesn’t have to be that way. Introducing For loops.

To use a For loop in pseudocode, we use the following structure:

1. FOR variable_name = start_value TO end_condition DO
2. // Code to be repeated can go in here
3. ENDFOR

Where variable_name is the name of the integer variable that we want to use for the For loop,

start_value is the value we want our for loop to start at, and end_condition is the condition that we will

use to stop our For loop. The For loop will generally run until the end_condition is False.

Let’s show this in an example, solving our previous problem of counting from 1 to 10.

1. BEGIN
2. Declare counter as type Integer
3. For counter = 1 To counter <= 10 Do
4. Display counter
5. EndFor
6. END

Using this same code, we can even solve our problem of needing to count from 1 to 1000.

1. BEGIN
2. Declare counter as type Integer
3. For counter = 1 To counter <= 1000 Do
4. Display counter
5. EndFor
6. End
7.

We can go all the way up to 1 million and beyond if we had to. All while using the same 3 lines that make

up our For loop, and only changing our end_condition. This alone gives a clear indication of the kind of

power you have with a For loop. But… How does it work?

Our counter variable acts as a tracker, holding each successive value in the loop, allowing us to use it as

we please. As long as we don’t actually change the value of counter, the loop will run as we expect it to.

Isaiah Carrington

This process of going through values using a For loop, is known as iterating, and each successful run of

the For loop, is referred to as an iteration.

In programming languages, there is generally some explicit rule as to how the counter is increased. For

example:

Figure 5: Counting from 1 to 10 in C++

In the case of C++, the way the counter is incremented, is defined inside of the For loop. In the example

above, this is by i++, which if you can recall, means to add 1 to the value of i. Another example:

Figure 6: Counting from 1 to 10 in Python

Isaiah Carrington

In the case of Python, we use range function to determine the range of numbers that we want to iterate

through. It is worth noting that when using range, the provided numbers only go up to, but not including

the end number.

Pseudocode, however, is neither a programming language, nor real code. As such, the direction of our

iteration is mainly implicit and dependent on our end condition. For example, if our end condition were

lesser than our starting value, then that would imply that our pseudocode wishes to count backwards.

For example, say we want to count numbers from 10 to 1. We could use the following:

1. BEGIN
2. Declare counter as type Integer
3. For counter = 10 To counter >= 1 DO
4. Display counter
5. EndFor
6. END
7.

By looking at our condition, we can deduce that our loop is counting backwards, from 10 to 1.

With this, we can now move onto while loops.

The While Loop

A while loop is another kind of iterative structure, that we can use to repeat a block of code. What

makes it different from a for loop however is its terminating condition. To do a while loop in

pseudocode, we make use of the following format:

1. WHILE condition DO
2. // Code to be repeated here
3. ENDWHILE

As you can see, there’s no need for a counter variable. So how do we keep track and know when to end

our while loop? To answer that question, it comes down to the condition that we give our while loop.

Similar to the For loop, the while loop will run until the condition that it was given becomes False.

However, unlike the For loop, unless we explicitly make it so that the condition can become False, we

may easily end up with an infinite loop, that is, a loop that runs on for infinity. While this may sound like

a horrible thing, infinite loops do have a purpose, such as if you NEED to keep something running, for

example, a game loop or a patient’s life support.

For our examples using while loops, we’ll first attempt to fix our problem (again), of having to count

from 1 to 10 inclusive.

Note: Although a counter variable is not necessary for a while loop to function, we can still use one if we

want to. Although, we will have to manage it ourselves.

1. BEGIN
2. Declare counter as type Integer and Initialize it with 1
3. While counter <= 10 Do

Isaiah Carrington

4. Display counter
5. counter = counter + 1
6. EndWhile
7. END

If we were to run the above code, then you will realize it gives us the same exact result as our For loop,

however, requiring an extra line or 2 to do so.

From this example, we can see that whatever we can do with a for loop, we can also do with a while

loop, albeit with more steps. So, what really sets the while loop apart and makes it unique? The answer

lies in the condition.

A common use for while loops is to continuously prompt for input until a desirable response is reached.

Here is an example to explain.

Of course, this example is mainly a joke, but it gives a clear indicator as to what we can do with while

loops. Here is a more practical example.

Isaiah Carrington

In the above example, we created a simple while loop, which will find the sum of all numbers that a user

enters. This while loop will continue to run until the user enters 0 as their number, at which point the

loop ends, and the resulting sum is displayed.

We can make the condition of the while loop anything that we want to suit our needs, making it far

more flexible than a for loop.

Note: You will use a for loop if you want to loop a known number of times. However, you will use a

while loop if you want to repeat a section of code an unknown number of times, such as when

dependent on user input.

Do While Loop

A variation of the while loop that you may come across is called the Do… While loop. This type of while

loop functions identically to the regular While loop, with one exception; the code in the loop is

guaranteed to run at least once. Here, let me sho

w you.

If you can recall, our regular while loop looks like this:

Isaiah Carrington

This is fine and all, but if you look closely you may ask yourself one question. What happens if the

condition is false before the while loop begins? Well, the answer to that, would be absolutely nothing.

For example, take this code snippet.

Can you tell what will be outputted when we run our program?

If you said: -1 is less than 0, then I will have to give you +30 points as you are 100% correct. As we give

our variable num a value of -1, and our while loop condition states that we only want to run the code

inside of it as long as the variable num is greater than or equal to 0, then our value of -1 immediately

makes the while loop condition false and invalid. As such, the loop is never run.

However, what if for some reason, we needed to make sure that this loop was run at least once. In this

case, you may see something like this snippet here:

Isaiah Carrington

Here, what we did is ask the user to first enter a number, any number. We don’t care what the number

is, we just want a number to add to our total. If the number the user entered the first time was 0, then

we move past the while loop and display the sum to the user. If not, then we enter the while loop, and

ask for another number.

This method is fine and all and guarantees that the user would have provided some input to our

program. However, the biggest problem with it is that it requires code to be duplicated. If you look back

at the snippet, you will realize that we must prompt the user for input twice, read the input twice, then

do the addition twice. Once before the while loop, then again inside of the loop. Just mildly inefficient

wouldn’t you agree? But never fear, Do… While is here!

As mentioned, by using a Do while loop, we can guarantee that the loop will get executed at least once.

This is because the loop is executed before the condition is checked. Look at the same problem above,

but solved using a do while instead in the below snippet:

Isaiah Carrington

Just like that, we remove our redundant lines, keeping only what we need. When the program begins, it

will go inside of the DO, run all of the code inside there, and only then will it check the condition. If the

condition is True, then it runs the loop again, however, if it is false, then the loop ends, and it displays

the sum of the numbers. Neat isn’t it.

The DO… WHILE loop generally follows this format:

Review

In this section, we have looked at 3 different types of loops, namely the For, While and Do While loops,

along with how to create them and their use cases. With this, we can conclude this section on

Repetitional Programming, and move onto the next section.

Isaiah Carrington

Functional Programming

Introduction

Functional programming is not one of the 3 basic programming constructs, but it is definitely a

fundamental style that you WILL use throughout your computer science education. Functional

programming makes use of a concept known as functions, which greatly improves the readability and

manageability of your code, especially as it gets larger and more complex.

What are functions?

Functions are essentially sections of code that have been grouped together under a single name, which

can then be invoked when it is needed and can return a value. Its main use is to remove redundancy and

repetition from code, and uses a principle known as DRY (Don’t Repeat Yourself), which allows us to run

the same section of code without having to recode it each time. As we continue to explore functional

programming, you will start to see why it is so helpful.

Creating a function

As mentioned, a function allows us to define a section of code that we can run at any point during our

program, without having to type the same code repeatedly. To create a simple function in pseudocode,

we can use the following format:

This is known as the function definition. Much like how each entry in a dictionary has a name and an

associated meaning, these lines allow us to give a name to our code (the meaning).

Now, whenever we want to run the code from within this function, known as calling the function, we

can simply do the following:

Where function_name is the name of the function in both cases.

Isaiah Carrington

Example 1: Print Function

Say we wanted to display a certain set of messages multiple times throughout our program, we may do

something like this:

This is ok, I mean, it gets the job done. However, this is a lot of lines that we have to maintain now.

What if we wanted to change the message from “Good to know!” to “Thank you for telling me”, for

example. Then we would have to find every time we used that copy and pasted code and make the

change there. What if we wanted to change the dashes to be another symbol? As you can imagine,

managing these extra lines of code can turn out to be very costly and a waste of resources. By using

functions, we can fix all those problems. Look at this snippet, which does the same thing as the previous

one, but is so much neater.

Isaiah Carrington

The output from this code will be the exact same as the previous code. Wherever we call the Print

function, by using Print(), the code within the function definition gets executed. In this case, the

messages we set to be displayed are displayed to the user. Now if we wanted to change the message to

say something else, all we must do is change the function definition, and the changes will be reflected

across every place where we call the function. Neat and efficient.

Naming a function

When naming a function, it should give a brief summary of what the function is meant to do. For

example, if I were to name a function thing, you would have no idea what it does unless you were able

to look at the function definition. However, if I named my function sum, even without looking at the

definition you can make a good guess that the function will find the sum of give numbers. As with

variable names, having a sensible name not only helps you, but any developer that has to work with

your code in the future.

 Even a name that may make sense to you when you do it, may leave you confused when you review

your code to make improvements or fixes. I personally have been embarrassingly guilty of this, causing

me to have to rewrite a large section of my code because I could not figure out what each part was

supposed to do .

Isaiah Carrington

Arguments and Parameters

So, you can use a function to call code that you stored in it from anywhere within your program to help

improve maintainability and readability. Well, that’s useful and all but, is that where the usefulness of

functions end? From me saying that, I am certain that you already know the answer . Where

functions truly become powerful, is through the use of arguments and parameters.

Just a little while ago, we looked at the format needed to create a function. I.e.

What may have gotten some of you confused or piqued your interests, was the parentheses, or brackets

() as you may know them. You may have asked yourself what they were for and why you needed them.

Well, now is the time to answer that question.

When we create a function, we can set up parameters. These are values that can change the behavior of

the function. We do this by providing the name of the parameter inside of the parentheses, which then

allows us to use the values within our function.

Example 2: Print Function

 To showcase this, we can look once again at the Print function we made earlier.

What if instead of saying “Good to know!” every time, we wanted to say something different. Would it

be better to just you sequential programming instead of a function? Would we have to make multiple

functions with each change? The answer to both of those questions, is no. By providing a parameter to

our Print function, we can modify the output however we please. For example:

Isaiah Carrington

Here, we created the parameter within the function definition, and called it message. Now within our

function, we have access to this variable message and can now display it to the screen instead of the

usual “Good to know!”

By now, you must be wondering, “But how do I get a value into the function for me to use it?”. The

answer to this, are arguments.

Recall, the parameters in our function definition, allow us to pass values from outside our function,

inside of it, so we can use them as we please. These values that we pass in are known as the arguments.

Similar to how the parameters are created in the function definition, arguments are passed in when we

call the function. For example, if we wanted to display the following messages using the same format,

the dashes, then the message, then the other dashes, we can do:

Each time we pass a value into the brackets of the function call, we are passing that value to our

function, which is then storing the value into the parameter called message, and then displaying it.

Isaiah Carrington

Here’s an example done in Python:

Figure 7: Using a function in Python

Recap

Parameters are set up in the function definition and allow you to pass values into the function to change

how the function behaves.

Arguments are values that you pass into the function when you call it to modify the function’s behavior.

Isaiah Carrington

Multiple Parameters and Arguments

In many cases, you may want to pass more than one argument into a function to further modify its

behavior. For example, a function designed to find the sum of 2 numbers provided to it. To provide

multiple parameters to one function, you separate each one with a comma. Same applies to passing in

multiple arguments.

Take note that you may only pass in as many arguments as they are parameters.

Here’s a look at a Sum function:

As was mentioned, this function takes in two numbers, and then displays their combined sum. If we

were to call this function with numbers, we would do it like this:

Note: You may have as many parameters as you need, as long as you provide just as many arguments.\

Review

In this section, you would have learnt about functions, how to create and name them and how to modify

them using arguments and parameters. This covers all the fundamentals with regards to functions and

concludes this section.

Isaiah Carrington

Review
In this section, we would have looked at the 4 different types of programming constructs, along with

how and when to use each one. These constructs are arguably one of the most important parts of

programming, as they will determine the best way for you to structure your code depending on the task

that you have to complete.

Isaiah Carrington

End of Chapter 2
Congratulations on making it to the end of Chapter 2: Programming fundamentals. In this chapter, I have

introduced you to all of the fundamentals that you need in order to really get off the ground and get

started on your programming journey. Everything that we have covered here in this chapter is core and

will be used in your day-to-day programming activities, so be sure to review it carefully and in detail.

The topics we have covered include:

- IPO (Input processing Output) and what it is

- Variables (Naming, creating, assigning, and using)

- Basic data types (Integers, Floats, Characters, Strings and Booleans)

- Operators (Arithmetic, Logical, Relational and Unary)

- Programming Constructs (Sequential, Repetitional, Selection and Functional)

Now that we have the fundamentals, we can step it up a bit by looking at Data Structures in the next

chapter!

